RANDOM FIXED POINT THEOREMS AND LERAY-SCHAUDER ALTERNATIVES FOR UckMAPS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed Point Theory and Generalized Leray–schauder Alternatives for Approximable Maps in Topological Vector Spaces

Some new fixed point theorems for approximable maps are obtained in this paper. Homotopy results, via essential maps, are also presented for approximable maps.

متن کامل

Leray–schauder Type Alternatives and the Solvability of Complementarity Problems

We present in this paper several existence theorems for nonlinear complementarity problems in Hilbert spaces. Our results are based on the concept of “exceptional family of elements” and on Leray–Schauder type altrenatives.

متن کامل

Approximate fixed point theorems for Geraghty-contractions

The purpose of this paper is to obtain necessary and suffcient conditionsfor existence approximate fixed point on Geraghty-contraction. In this paper,denitions of approximate -pair fixed point for two maps Tα , Sα and theirdiameters are given in a metric space.

متن کامل

Fixed point theorems for $alpha$-contractive mappings

In this paper we prove existence the common fixed point with different conditions for $alpha-psi$-contractive mappings. And generalize weakly Zamfirescu map in to modified weakly Zamfirescu map.

متن کامل

Random fixed point theorems with an application to a random nonlinear integral equation

In this paper, stochastic generalizations of some fixed point for operators satisfying random contractively generalized hybrid and some other contractive condition have been proved. We discuss also the existence of a solution to a nonlinear random integral equation in Banah spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications of the Korean Mathematical Society

سال: 2005

ISSN: 1225-1763

DOI: 10.4134/ckms.2005.20.2.299